More than 20 million smartphones are sold in Germany – every single year. Amongst the buyers are municipalities that procure mobile phones for their employees. Although cities and municipalities operate dedicated collection points where people can hand in their e-waste, around 200 million mobile phones languish unused in homes across the country.
However, these devices contain many raw materials which, if recycled, could help reduce global mineral extraction and thus help protect the environment. What is more, the extractive industries are rife with reports of labour and human rights abuses. This also applies to the production of mobile phones across widely extended supply chains. The upshot: The fewer new mobile phones purchases, the better. Furthermore, it is important to optimise their usage from an energy efficiency perspective.
Public procurement can generate important incentives for more sustainable production while also pioneering the long-term use, repair, collection and recycling of mobile phones.
For general information on integrating sustainability into the procurement process, see here.
An online tool to assess the local human rights situation by "Helpdesk Business & Human Rights" is available here.
Municipal best practice examples of sustainable procurements of mobile phones, see here (German only).
Further information on mobile phones (in German):
Click on the individual stages in the information graphic on the left to learn more about the ecological and social challenges when purchasing mobile phones.
More than 60 different raw materials are needed to make a mobile phone. And many more metals lie hidden beneath the plastic, glass and ceramic casings and behind the aluminium and indium displays, amongst them: gold, cobalt and lithium for batteries, gallium for the camera and coltan for the capacitor. The extraction of these and other raw materials entails numerous environmental, social and human rights risks. Examples include:
Environmental challenges:
Social challenges
Metals are made from ores, plastic from crude oil: Stage two of the value chain processes raw materials, turning metals, plastics and other components into so-called ‘intermediate goods’ and ‘semi-finished products’. This includes cables, circuit boards or processors. Substances that are harmful to health are used in many stages of processing, including heavy metals like cadmium and lead or carcinogenic solvents like benzene, the use of which has long been banned in the EU. The semi-conductor industry in particular uses between 500 and 1,000 different chemicals, many of which are highly noxious.
Further processing also often involves environmental and social risks. Examples include:
Environmental challenges:
Social challenges
Mobile phone manufacturers profit from outsourcing production. In keeping with the logic of ‘downward competition’, production often takes place where human rights and social and environmental standards are at their lowest. While big companies in industrialised countries get the lion’s share of the profit, mobile phone assembly is mostly left to factories in East and Southeast Asia. Mobile phone production is a branch of industry known for its extremely precarious employment conditions. So-called ‘flexible on-demand production’ forms part of a business model that fosters the abuse of what are already low environmental and social requirements. For example, without proper safety gear, the use of chemicals like n-hexane for cleaning glass screens can chronically impact the central nervous system, triggering correspondingly serious illnesses.
Examples of negative impacts include:
Environmental challenges:
Social challenges
In terms of their energy balance, mobile phones consume the largest proportion of energy and resources during manufacture. In comparison with other electronic devices, a mobile phone itself does not consume much energy, even if used intensively. However, energy consumption levels are significantly higher in the infrastructure needed to transmit data. It is also worth noting that mobile data transfer uses considerably more energy than a wireless connection.
The carbon footprint can be minimised during the phone’s service life, essentially by using the device for as many years as possible. Thus, at the procurement stage already, it is important to make sure the battery can be exchanged and to check whether, and to what extent, the device can be repaired and how long it will remain eligible for software updates. Never agree to the delivery of any chargers, headsets or adapters etc. when purchasing new devices, as these are often already available. The Specific Absorption Rate (SAR) value is an indicator of the electromagnetic radiation emitted by a mobile phone and thus its level of impact on the human body. Where possible, the SAR should be less than 0.6W/kg.
Numerous negative environmental and social impacts occur during usage, including:
Environmental challenges:
Social challenges
Waste from electric and electronic appliances – which includes mobile phones – constitutes one of the fastest growing streams of waste in the world. And yet recycling quotas are extremely low. For example, large quantities of European electrowaste are dismantled in the West African states of Ghana and Nigeria under sub-standard environmental and social conditions. At the same time, terms such as ‘urban mining’ and ‘anthropogenic stock’ underscore recycling’s potential, especially for the recovery of metals. To date, the focus has mainly been on economically motivated recycling approaches. However, we need to develop a holistic approach that prioritises environmental and social aspects along the lines of a circular economy. In this context, design4recycling is of enormous importance: that is to say, product development must already stress an item’s repairability and capacity for recycling.
At the same time, collection quotas need to be increased. Awareness-raising work and information campaigns, which can also be promoted as part of ‘education for sustainable development’ have a key role to play here. In addition to the recycling depots that municipalities are obliged to operate, they could, in many places, also set up readily accessible ‘electrowaste containers’ or operate ‘mobile hazardous waste units’. Furthermore, they could support community repair workbenches and independent repair workshops.
Environmental challenges:
Social challenges
Iron ore extraction in Brazil, bauxite mining in Guinea, copper from Peru; production in Hungary, Mexico and China. This is what a mobile phone production supply chain might look like. Getting from raw materials extraction to the finished product generally entails long transport distances by ship, truck and train. Fuel consumption and emissions negatively impact the environment and stress the climate in a way that is also harmful to human health. Transport with heavy-duty vehicles such as trucks is regulated by the Euro 6 emissions standard (Commission Regulation EU/582/2011), and procurers should demand compliance from hauliers.